Tekmos Talks

 
A Newsletter for the Semiconductor Industry
February 2017 
 

 Tekmos ITAR Chip Logo O

Welcome to Tekmos Talks February 2017. This month we will talk about Tekmos ASIC's made in the USA, Part IV on Block Ram, and introduce two new Tekmos products.

From the Desk of the Vice President Sales & Business Development

ASICs Designed & Made in the USA

Tekmos FPGA Header 675x250

Tekmos offers customers the ability to have their ASIC or customer specific designs created and manufactured in the United States. This is typically important for companies that require ITAR compliance in their market.

The ability to design a unique customer specific part can provide competitive advantages and exceptional protection of confidential intellectual property.

Tekmos performs all design work in our Austin, Texas technology lab.

We can then have masks created, wafers fabricated and assembled with our partners in their US facilities. Tekmos then tests every part in our Austin test facility before shipment to customers. A customer specific design is essential when the application requires functions that are not readily available from standard products or when IP must be protected under the ITAR compliance rules.

Tekmos can build a wide range of devices including microprocessors, digital, analog, extended voltage ranges and supports extended temperature from -55ºC to as high as 250ºC. Our engineers are very skilled at including existing IP already developed to provide a very fast lead-time for prototypes and production units.

One of the advantages at Tekmos is our experience and understanding in developing accurate test programs. We are unique in our use of embedded reliability monitors to track the relationship of every chip to the manufacturing lots it was made on for detailed reliability analysis for mission critical projects.

For more information on having your specific designs proudly created and made in the United States, contact This email address is being protected from spambots. You need JavaScript enabled to view it.

Part IV Design of Dual Port RAM, by Lynn Reed

The Sense Amps Part IV

Unify finger printWhen a memory is read, the word line enables a row of bits. Each bit is connected to two bit lines, and depending on the state of the bit, will pull one or the other to ground. The bits are weak, and there is a lot of capacitance on the bit lines, so it will take a long time to drive a given bit line to zero.

A sense amp is an analog circuit that is designed to sense very small differences in the two-bit lines, determine which line is going to ground, and which is remaining at the supply. The sensitivity of the bit lines is key to setting the memory access time, since the faster the difference can be detected, then the faster the data is available.

The sense amps' circuitry also provides a bit line precharge, bit line multiplexers, output multiplexers, and the write circuitry.

The Precharge

Before the memory can be read, the bit lines must be precharged to Vdd. This is accomplished by relatively large transistors that short the lines to Vdd. In addition to the two-bit line transistors, there is a third transistor that shorts the bit lines together. This insures that the bit lines start out with the same values prior to the beginning of the read cycle.

Instead of having a precharge cycle at the beginning of the read cycle, precharge is designed to occur in the resting state, which the processor enters at the end of a read cycle. Using large transistors means that the circuit is quickly precharged, and is ready for the next read cycle.

Bit Line Multiplexers

While every bit line needs a precharge circuit, every line doesn't need a sense amp. Doing so would be a wasteful use of power, and besides that, there is not a lot of room for that many sense amps.

Memories are organized in roughly square arrays. Our design is organized as 256 rows by 72 bits. We use a two to 1 multiplexer to connect 4 bit lines to a single sense amp. This memory is unusual in that we have word widths ranging from 1 to 36 bits. Had this been a x9 memory, we would have used an 8 to 1 multiplexer. To prevent errors in the read data, a precharge circuit is added to every internal node in the multiplexer.

The Sense Amp

The sense amp itself is just a cross coupled inverter pair that is powered through a sample clock. Transmission gates connect the inverter to the output of the bit line multiplexers. The presence of a small difference in bit line voltage levels is enough to cause the sense amp to settle in as high or low when the sample clock occurs.

My favorite analogy for a sense amp is to consider a ball that is perfectly balanced on a hump. Just the slightest difference in the bit line voltages is enough to cause the ball to fall on one side or the other.

To make the sense amp work perfectly, it is very important to make sure that the layout is perfectly symmetrical between the two-bit line sides. Any difference will tend to influence which way the sense amp switches. This can be compensated for by delaying the sample clock to allow more margin (i.e. more voltage difference) on the bit lines. Of course, this comes at the cost of increasing the RAM access time.

Output Multiplexers and Drivers

Once the sense amps have determined the data, it is stored in output latches. We will store 36 bits every read cycle. Then we will use another set of muxes to step the data down to the programmed data width.

Writing Data into the Bits

In comparison to reading, the write cycles are trivial. All that is required is to force a zero on one of the bit lines. When the word line is selected, data is written into the bits. Because the width of the memory is programmable, we might have to write to a single bit. We accomplish this by just not writing to the other bit lines. Keeping both bit lines high is just a read cycle as far as those bits are concerned and does not disturb the data.

Next Time - Self Timing

For the RAM to work correctly, the sample clock must be positioned at the exact correct point to optimize trade offs between signal size and RAM access time. I will explain self-timed RAMs next month.

New Product Announcement

Tekmos Announces a New Release of the TK68HC711D3 and TK68HC11D0 Microcontrollers

TK68HC711D3Tekmos has announced the qualification and release of two of our microcontrollers, the TK68HC711D3 and TK68HC11D0. The micros were originally made at our provider Plessey Semiconductor. Plessey closed their 0.35u fab, and the designs were transferred to the X-Fab foundry located in Dresden, Germany. Originally each design had its own mask set. This reflected the fact that the parts were designed at separate times. When the designs were transferred to Dresden, the designs were merged onto a common substrate die. The new die was designed to support an optional Flash memory, which could be enabled through bond options.

There are no changes to the operation of either circuit, and each chip remains a drop-in replacement for the original NXP parts.

Having a drop-in replacement for parts has shown to be a very cost effective way to extend the life of products when the original component manufacturer discontinues a part. The availability of a drop-in replacement part eliminates the need to make the tough decision whether to redesign a printed circuit board or discontinue a product.

Tekmos continues to be the "go to" supplier when there are problems finding obsolete parts or when additional parts are needed after the date for EOL (End of Life) purchase has passed. Tekmos makes a variety of microcontrollers, microprocessors, and other miscellaneous standard products to satisfy these needs. Tekmos also continues to make custom ASIC replacement parts.

Customers are aware that buying from Tekmos ensures pin for pin, drop-in replacements that can be counted on to work in their applications, without worry about the quality of parts purchased on the grey market.

Thank You for Reading Tekmos Talks

image005 O

Thank you for reading Tekmos Talks. Call (512) 342-9871 or email Sales for more information.

Tekmos' Unify for your SiP , with continued innovation.

Logo new 3

7901 E. Riverside Dr. Building 2, Suite 150
Austin, TX 78744
Phone: (512) 342-9871
Fax: (512) 342-9873
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Source: Tekmos, Inc.

 
Feedback